
G

Towards General and Efficient Online Tuning for Spark

연세대학교 컴퓨터과학과 이지은

2024년 3월

과학1|술정보통신_ 연세대악교
Ministry of Science and ICT YONSEI UNIVERSITY

SW ST{1'R LAB
Software Technology Advanced Research

과제명: loT 환경을 위한 고성능 플래시 메모리
스토리지 기반 인메모리 분산 DBMS 연구개발

과제번호: 2017-0-00477

IIIP 정보통신71술진흥센터

ABSTRACT
‣ The distributed data analytic system – Spark is a common choice for processing massive volumes of heterogeneous data,

while it is challenging to tune its parameters to achieve high performance. Recent studies try to employ auto-tuning
techniques to solve this problem but suffer from three issues: limited functionality, high overhead, and inefficient search.

‣ In this paper, we present a general and efficient Spark tuning framework that can deal with the three issues
simultaneously. First, we introduce a generalized tuning formulation, which can support multiple tuning goals and
constraints conveniently, and a Bayesian optimization (BO) based solution to solve this generalized optimization problem.
Second, to avoid high overhead from additional offline evaluations in existing methods, we propose to tune parameters
along with the actual periodic executions of each job (i.e., online evaluations). To ensure safety during online job
executions, we design a safe configuration acquisition method that models the safe region. Finally, three innovative
techniques are leveraged to further accelerate the search process: adaptive sub-space generation, approximate gradient
descent, and meta-learning method.

‣ We have implemented this framework as an independent cloud service, and applied it to the data platform in Tencent. The
empirical results on both public benchmarks and large-scale production tasks demonstrate its superiority in terms of
practicality, generality, and efficiency. Notably, this service saves an average of 57.00% memory cost and 34.93% CPU
cost on 25K in-production tasks within 20 iterations, respectively.

2 / 35

1. INTRODUCTION
‣ The rapid growth of the World Wide Web, E-commerce, Social media and other applications is producing massive

mounts of ever-increasing raw data every day.

‣ Companies often utilize this “big data” to innovate pioneering products and solutions, e.g., improving customer service,
marketing, sales, team management, and many other routine operations. To this end, many distributed analytics platforms
(e.g., Hadoop Mapreduce, Spark, Storm, Flink, Heron, Samza) have emerged to deal with this big data trend.

‣ Spark is one of the representative systems that enable the manipulation and analysis of large datasets with in-memory
cluster computing.

‣ As of today, thousands of organizations, such as Google, Microsoft, Amazon, Meta, Oracle, Snowflake, Databricks,
Tencent, and Alibaba are using Spark in production across a vast range of fields including data processing, machine
learning, graph computing, stream computing and database management.

3 / 35

‣ The performance of Spark jobs highly depends on the choice of Spark configuration parameters. Misconfiguration can
lead to unsatisfying performance such as long runtime, resource contention, and resource under-utilization. For
instance, an improper configuration may lead to over 100 times the execution time compared with an elaborately
designed one.

‣ Therefore, it is crucial to choose proper configurations to achieve high performance (e.g., in terms of execution time or
cost). The benefit of tuning is even more significant for periodic (hourly, daily, weekly, etc) jobs, where they occupy a
large proportion of Spark jobs in production. In this paper, we focus on tuning periodic Spark jobs.

‣ To achieve a near-optimal performance of periodic tasks, users are required to determine a large number of performance-
critical configuration parameters. However, it is very difficult to manually tune the configuration parameters of a Spark
task due to (1) the high-dimensionality of the parameter space and (2) complex and non-linear interactions among
parameters.

‣ In addition, manual tuning is usually time-consuming and labor-intensive, and thus it fails to scale to a huge number of
tasks in a data platform. Recent studies propose to utilize auto-tuning techniques to optimize the Spark parameters.
During our attempts to apply these approaches in real tuning tasks, we realize three aspects of limitations:

1. INTRODUCTION
4 / 35

1. INTRODUCTION
C.1 Limited Functionality
‣ Lots of methods are designed to minimize execution time, i.e., finding the fastest configuration.
‣ However, the goal in many scenarios involves the execution cost, i.e., the cheapest configuration ,or more generalized objectives such

as a weighted combination between runtime and cost.
‣ In addition, the tuning process should satisfy some application requirements  the execution time < threshold (constraint)

C.2 High Overhead
‣ Many tuning frameworks belong to the offline tuning paradigm.
‣ Concretely, they collect training samples by running jobs with different configurations on a non-production cluster, and then train a

performance model to suggest new configurations for Spark job running on the production cluster. Training such an accurate
performance model involves lots of offline job executions (e.g., 1000-10000).  very time-consuming and expensive

‣ In addition, since workloads may change as time proceeds, offline tuning methods cannot capture and adapt to these dynamics easily.

C.3 Inefficient Search
‣ The configuration search in many methods suffers from the low-efficiency issue that arises from two aspects:
‣ (1) Huge search space the curse of dimensionality
‣ (2) Intrinsic dilemma of black-box optimization  facing the cold-start issue and challenging when dealing with the exploration and

exploitation trade-off
‣ The meta knowledge across tasks could help to deal with cold-start and slow convergence issues during search.

5 / 35

1. INTRODUCTION
C.1 Limited Functionality
‣ A generalized formulation about the tuning problem, which supports various goals and multiple performance constraints conveniently.
‣ We develop a noise-robust Bayesian optimization-based solution.

C.2 High Overhead
‣ Different from offline approaches that require a large number of job executions in advance, we propose an online tuning paradigm,

where we tune parameters along with the in-production periodic executions of each Spark job, thus incurring no additional execution
cost as in offline methods.

‣ This online setting requires that the BO-based framework should converge to good configurations quickly (efficiency) and explore as
few bad configurations as possible to get there (safety). To this end, we design a configuration acquisition method, which models and
utilizes the safe region from the Gaussian process to achieve safe exploration, and then leverages the expected constrained
improvement to trade-off exploration and exploitation when suggesting new configurations.

‣ To accommodate the dynamic workload in the online setting, we encode the workload characteristic into the Gaussian process using
mixed kernels in BO.

C.3 Inefficient Search
‣ We develop three innovative techniques within BO to accelerate tuning.
‣ (1) Adaptive sub-space generation
‣ (2) Approximate gradient descent
‣ (3) Meta-learning module

6 / 35

1. INTRODUCTION
C.3 Inefficient Search
‣ We develop three innovative techniques within BO to accelerate tuning.
‣ (1) Adaptive sub-space generation

‣ BO is known to be difficult to scale to high dimensions.
‣ The size of the sub-space will be automatically adjusted based on the intermediate tuning results to balance convergence speed and

quality.

‣ (2) Approximate gradient descent
‣ Since gradient methods have shown superior convergence speed compared with black-box methods in numerical optimization, we

develop a novel approximate gradient descent method within BO to select the next configuration, which can estimate and
leverage the derivative information of the objective function to speed up the search process.

‣ (3) Meta-learning module
‣ Motivated by the observation that the regions of optimal/near-optimal configurations are similar between two similar tuning tasks,

we design a meta-learning module that learns the similarity between tasks based on tuning history from previous tasks.
‣ Further, this module can transfer useful knowledge, e.g., the optimal configuration or the distribution of good configurations, to the

current tuning task.

7 / 35

2. BACKGROUD

8

2.2 Terminology
Our goal is to find the optimal or near-optimal configuration from the configuration space.

Configuration Space.
‣ N spark parameters : 𝑥𝑥𝑝𝑝𝑝, 𝑥𝑥𝑝𝑝𝑝, … , 𝑥𝑥𝑝𝑝𝑝𝑝

‣ Each 𝑝𝑝𝑖𝑖 corresponds to a specific parameter in Spark, e.g., spark.executor.instances,spark.executor.memory.

‣ The range of the 𝑖𝑖𝑡𝑡𝑡 parameter 𝑝𝑝𝑖𝑖 is denoted by Λ𝑖𝑖.
‣ Λ𝑐𝑐𝑐𝑐 = Λ1 × Λ2 × ⋯Λ𝑁𝑁

‣ x : a configuration instance (a vector) in Λ𝑐𝑐𝑐𝑐.
‣ The 𝑖𝑖𝑡𝑡𝑡 element 𝑥𝑥𝑖𝑖 corresponds to the value of 𝑖𝑖𝑡𝑡𝑡 parameter 𝑝𝑝𝑖𝑖 and 𝑥𝑥𝑖𝑖 ∈ Λ𝑖𝑖.

Configuration Subspace.
‣ A configuration subspace Λ𝑠𝑠𝑠𝑠𝑠𝑠 is the set of all possible combinations of values of each parameter in the space, which only includes a

part of Spark parameters.

‣ Therefore, the size of the configuration subspace usually is much smaller than the original configuration space Λ𝑐𝑐𝑐𝑐.
‣ Λ𝑠𝑠𝑠𝑠𝑠𝑠 ⊂ Λ𝑐𝑐𝑐𝑐

9 / 35

3. SYSTEM DESIGN

10

3.1 Overview

1) The OnlineTune controller is responsible for orchestrating the entire configuration tuning process, along with interactions the data
platform and end users.

2) The multi-purpose surrogate models are to learn complex relationships between configurations and objective metrics or performance
constraints

3) The efficient and safe configuration generator is to suggest a promising configuration to evaluate for a tuning task.

4) The meta-knowledge learner can leverage tuning history form previous tasks to further accelerate the search for configurations.

5) The data repository is to store tuning-related data, including history, workload metrics, etc.

11 / 35

3.2 Generalized Problem Formulation
‣ Given a tuning task, our goal is to find the optimal or near-optimal Spark configuration that minimizes the objective and satisfies

performance/safety requirements. To support general Spark tuning cases, we provide a generalized tuning formulation that supports
both different objectives and inequality constraints from real applications.

‣ 𝑇𝑇 𝑥𝑥 : the runtime function for tuning task

‣ 𝑃𝑃 𝑥𝑥 : the price per unit of time for all computing resources
‣ not easy to obtain and positively correlated with the amount of resource used in x given a fixed computing environment

‣ 𝑅𝑅 𝑥𝑥 : the amount of resource used by the job execution. Using this to replace 𝑃𝑃 𝑥𝑥
‣ in terms of CPU cores and memory
‣ e.g., spark.executor.instances, spark.executor.cores, spark.executor.memory

‣ Further, we formulate this problem as follows:
minimize

𝑥𝑥∈Λ𝑐𝑐𝑐𝑐
𝑓𝑓 𝑥𝑥 = 𝑇𝑇 𝑥𝑥 𝛽𝛽 × 𝑅𝑅 𝑥𝑥 1−𝛽𝛽

𝑠𝑠. 𝑡𝑡. 𝑇𝑇 𝑥𝑥 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚,𝑅𝑅 𝑥𝑥 ≤ 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

‣ Generalized Objective with Different 𝜷𝜷
‣ 𝛽𝛽 ∈ 0,1
‣ 𝛽𝛽 = 1 or 0 or 0.5

12 / 35

3.3 Bayesian Optimization-based Framework
‣ Bayesian optimization (BO) is a framework to solve black-box problems where the objective can only be observed via evaluation.
‣ The main advantages of BO are that it is robust to noise and can estimate uncertainty to balance exploration and exploitation.

A typical loop in vanilla BO contains the following four steps:
1) Fitting a surrogate model M based on observed configurations 𝐷𝐷 = { 𝑥𝑥1,𝑦𝑦1 , … 𝑥𝑥𝑛𝑛−1,𝑦𝑦𝑛𝑛−1 }

2) Choosing the next promising configuration that maximizes the acquisition function 𝑥𝑥𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥∈𝜒𝜒𝛼𝛼 𝑥𝑥;𝑀𝑀

3) Evaluating the chosen configuration 𝑥𝑥𝑛𝑛 to obtain its performance 𝑦𝑦𝑛𝑛 = 𝑓𝑓 𝑥𝑥𝑛𝑛 + 𝜖𝜖 with noise 𝜖𝜖 ~ 𝒩𝒩(0,𝜎𝜎2)

4) Adding the pair 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛 to observations so that 𝐷𝐷 = { 𝑥𝑥1,𝑦𝑦1 , … 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛 }

13 / 35

3.3 Bayesian Optimization-based Framework
Surrogate Model – Gaussian Process
‣ hyperparameter-free and provides closed-form inference
‣ Given an unseen configuration x, the predictive mean and covariance are expressed as follows:

𝜇𝜇 𝑥𝑥 = 𝐾𝐾 𝑋𝑋, 𝑥𝑥 𝐾𝐾 𝑋𝑋,𝑋𝑋 + 𝜏𝜏2𝐼𝐼 −1𝑌𝑌

𝜎𝜎2 𝑥𝑥 = 𝐾𝐾 𝑥𝑥, 𝑥𝑥 + 𝜏𝜏2𝐼𝐼 − 𝐾𝐾 𝑋𝑋,𝑋𝑋 + 𝜏𝜏2𝐼𝐼 −1𝐾𝐾(𝑋𝑋, 𝑥𝑥)
‣ K : covariance matrix
‣ X : the observed configuration vectors
‣ 𝜏𝜏2 : the level of white noise

Acquisition Function
‣ To estimate the performance improvement of the unseen configuration, we apply the Expected Improvement (EI) function.
‣ Given the marginal predictive mean 𝜇𝜇(𝑥𝑥) and variance 𝜎𝜎2(𝑥𝑥) by the surrogate model, the EI function is defined as the expected

improvement over the best performance found,

𝐸𝐸𝐸𝐸 𝑥𝑥 = �
−∞

∞
max 𝑦𝑦∗ − 𝑦𝑦, 0 𝑝𝑝𝑀𝑀 𝑦𝑦 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝜎𝜎 𝑥𝑥 𝛾𝛾 𝑥𝑥 Φ 𝛾𝛾 𝑥𝑥 + 𝜙𝜙 𝛾𝛾 𝑥𝑥

‣ where 𝛾𝛾 𝑥𝑥 = 𝑦𝑦∗−𝜇𝜇 𝑥𝑥
𝜎𝜎 𝑥𝑥

,𝑦𝑦∗ is the best performance observed.
‣ Φ � and 𝜙𝜙 � are standard normal cumulative distribution function and probability density function.

14 / 35

3.3 Bayesian Optimization-based Framework
Dynamic Workload Support
‣ The workload may change during the online tuning process, particularly the data size. Since the same configuration for a workload may

achieve different results with different input data sizes, the change in data size could affect the tuning result.
‣ To accommodate this, we take the data size along with configuration into consideration and model the objective value with the Gaussian

Process.
‣ 𝑥̅𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑁𝑁 ,𝑑𝑑𝑠𝑠𝑖𝑖
‣ 𝑑𝑑𝑠𝑠𝑖𝑖 is the data size of that run

‣ Using mixed kernels: Matern kernel (for numerical), Hamming kernel (for categorical), and SE kernel (for data size)

Initial configurations
‣ Sampling several configurations using low-discrepancy sequences to initialize the observation D.
‣ To accelerate the convergence in the beginning, the meta-learning module can suggest the initial configurations based on task similarity,

instead using the low-discrepancy sequences.

Stopping & Restarting Criterion
‣ When the expected improvement is less than threshold, the stopping criterion is activated. If a continuous degradation is detected, re-

tuning becomes necessary, and our framework will restart the tuning process, where meta-learning is utilized to extract knowledge from
the previous runhistory to speed up the optimization.

15 / 35

4. EFFICIENT & SAFE CONFIG ACQUISITION

16

4.1 Sub-space Generation
An intuitive idea is to use a smaller configuration sub-space that includes the most influential parameters, instead of the
original huge space. Therefore, when dealing with the high-dimensional space, we need to answer two questions:
(1) how to measure the importance of Spark parameters
(2) how to adjust the size of the sub-space adaptively to pursue efficiency and effectiveness simultaneously.

Parameter Importance & Sub-space
‣ While existing methods only consider the influence between each parameter and performance via Spearman Correlation Coefficient or

weights of a learning model, we consider the importance of both single parameters and of interactions between parameters.

‣ We adopt functional ANOVA to assess the importance of parameters. Given the tuning history from a task, our parameter importance
analysis module could rank the parameters according to their importance. The final importance scores are obtained by averaging the
scores from those tasks.
‣ Λ𝑠𝑠𝑠𝑠𝑠𝑠 = Λ1 × Λ2 × ⋯Λ𝐾𝐾, (K is the size of the sub-space)

‣ Note that, when starting tuning from zero, there is no tuning history available to obtain the parameter ranking based on the
importance scores. We start with an initial parameter ranking suggested by experts. Once new tuning history arrives, we will
continuously update the importance score for each parameter based on FANOVA.

17 / 35

4.1 Sub-space Generation
An intuitive idea is to use a smaller configuration sub-space that includes the most influential parameters, instead of the
original huge space. Therefore, when dealing with the high-dimensional space, we need to answer two questions:
(1) how to measure the importance of Spark parameters
(2) how to adjust the size of the sub-space adaptively to pursue efficiency and effectiveness simultaneously.

Evolution Strategy of Sub-space
‣ Different from existing methods that use a fixed sub-space, we propose to automatically adjust the size of the sub-space, i.e., K.
‣ On one hand, a sub-space should be sufficiently large to contain good configurations. On the other hand, it should be small enough

to ensure that BO is accurate and efficient within this sub-space. Therefore, the evolution of 𝐾𝐾 is crucial.

‣ Similar to TuRBO, we adopt an intuitive design that we expand the sub-space when the BO optimizer “makes progress”, i.e., it finds
better configurations in the current sub-space, and “shrinks” it when the optimizer appears stuck.
‣ “success” : a configuration that improves over the best configuration found
‣ “failure” : a configuration that fails.

‣ After 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 consecutive successes : 𝐾𝐾 ← min 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐾𝐾 + 2

‣ After 𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 consecutive failures : 𝐾𝐾 ← m𝑎𝑎𝑎𝑎 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚,𝐾𝐾 − 2

‣ Once the size of sub-space is changed, the counters for the success and failure events are set to zero.
‣ 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 3, 𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 5, 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 = 4, 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 10, 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 = 30

18 / 35

4.2 Safe Exploration and Exploitation
The main process for the configuration generator to produce a new configuration is:
(1) build the final safe region 𝑆𝑆
(2) choose the next configuration by solving the EIC over 𝑆𝑆.

‣ To explicitly ensure the safety of job execution, we further propose safe exploration and exploitation to select the next
candidate. Given the predictive mean 𝜇𝜇𝑡𝑡𝑇𝑇(𝑥𝑥) and variance 𝜎𝜎𝑡𝑡𝑇𝑇

2(𝑥𝑥) from the runtime surrogate built at the 𝑡𝑡𝑡𝑡𝑡 iteration,
the upper bound is defined as:
‣ 𝑢𝑢𝑡𝑡𝑇𝑇 𝑥𝑥 = 𝜇𝜇𝑡𝑡𝑇𝑇 𝑥𝑥 + 𝛾𝛾𝜎𝜎𝑡𝑡𝑇𝑇

2(𝑥𝑥)
‣ where 𝛾𝛾 is a constant that controls the bound and 𝛾𝛾 ∈ (0,1]

‣ The safe region for runtime at the 𝑡𝑡𝑡𝑡𝑡 iteration is defined as 𝑆𝑆𝑡𝑡𝑇𝑇 = 𝑥𝑥 ∈ Λ𝑠𝑠𝑠𝑠𝑠𝑠 𝑢𝑢𝑡𝑡𝑇𝑇 𝑥𝑥 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 .

‣ For multiple constraints, the final safe region is the intersection of single safe regions.

19 / 35

4.2 Safe Exploration and Exploitation
The main process for the configuration generator to produce a new configuration is:
(1) build the final safe region 𝑆𝑆
(2) choose the next configuration by solving the EIC over 𝑆𝑆.

‣ In online tuning scenarios, evaluating a configuration that violates the constraints will inevitably downgrade the job
performance.

‣ To deal with constraints, we apply the EI with constraints (EIC) as the acquisition function.

‣ EIC takes the probability of satisfying the constraints into consideration.
‣ 𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥 = 𝑃𝑃𝑃𝑃 𝑇𝑇 𝑥𝑥 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 � 𝐸𝐸𝐸𝐸 𝑥𝑥

‣ where 𝑃𝑃𝑃𝑃 𝑇𝑇 𝑥𝑥 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 refers to the probability that satisfies the runtime constraints.

‣ 𝑃𝑃𝑃𝑃 𝑇𝑇 𝑥𝑥 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = ∫−∞
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 𝑇𝑇 𝑥𝑥 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑥𝑥

20 / 35

4.3 Approximate Gradient Descent
In Spark tuning, the objective in Eq. 1 is treated as a black-box function of input parameters with no available derivative
information. However, some parts of the objective functions are not always black-box. Though the relationship between
runtime and Spark parameters is complicated, the resource function has an analytic form:

𝑅𝑅 𝑥𝑥 = #𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 + 𝑐𝑐 � #𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)

‣ which is directly determined by the values of parameters
‣ spark.executor.instances, spark.executor.cores, spark.executor.memory

‣ Gradient-based techniques perform well in optimizing differentiable functions. Compared with BO, the derivative information of the
objective function provides more precise guidance on how to choose the next input parameters based on the current configurations.

‣ When observations 𝐷𝐷 are sufficient to approximate the objective function f(x), we can estimate the derivative information.

‣ However, since AGD emphasizes the exploitation signal only during the search process, it could be stuck in local configurations
easily. To address this and integrate the benefits of both methods, we alternately apply AGD and BO to select the next configuration so
that the combined framework balances exploration and exploitation well with a convergence guarantee provided in previous work [SMAC].

‣ Therefore, we develop the approximate gradient descent (AGD) technique within BO to utilize the derivative information of the
objective function and further accelerate the convergence over the search space.

21 / 35

4.3 Approximate Gradient Descent
‣ To apply gradient descent, the partial derivative of f(x) over each numerical parameter 𝑥𝑥𝑖𝑖 is :

‣ where 𝑥𝑥𝑖𝑖 is the 𝑖𝑖𝑡𝑡𝑡 Spark parameter. Since the resource function R(x) is a white-box function, the partial derivative of R(x) has an analytical form.

‣ However, the partial derivative of the runtime T(x) cannot be calculated directly. We approximate the partial derivative by:

‣ where all dimensions except the 𝑖𝑖𝑡𝑡𝑡 element in 𝜖𝜖𝑖𝑖 are zero. (𝜖𝜖2 = [0, 𝑒𝑒, 0, … , 0]), maybe.. 𝜖𝜖~𝒩𝒩 0,𝜎𝜎2
‣ The values of 𝑇𝑇(𝑥𝑥 + 𝜖𝜖𝑖𝑖) and 𝑇𝑇(𝑥𝑥 − 𝜖𝜖𝑖𝑖) are predicted by the surrogate for runtime.

‣ Then, the value of each parameter 𝑥𝑥𝑖𝑖 is updated by:

‣ where 𝜂𝜂 is the learning rate with 0.001
‣ During the tuning procedure, AGD is integrated into BO.

‣ Every 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 5 BO iterations, instead of BO, the next configuration x is generated by conducting AGD based on the best configuration
found

22 / 35

4.3 Approximate Gradient Descent
23 / 35

5. META-LEARNING BASED ACCELERATION

24

5.1 Task Characterization & Similarity Learning
‣ We extract the feature vector of a tuning task (i.e., meta-features) from SparkEventLog, in which Spark event information is logged

during execution. The meta-features summarize information in two levels: stage and task.
‣ Stage information contains the Spark actions and transformations used in the Stage, which shows core Spark function calls made during the job

execution.
‣ Task information describes whether, overall, the task was read or write-intensive, CPU intensive, etc.
‣ A total of 75 features: 11 Stage information and 64 Task information

‣ A straightforward method that measures the similarity is to compute the Euclidean distance between the two meta-features of
corresponding tasks. However, the type and scale of each meta-feature are heterogeneous, which greatly decreases the effectiveness of
Euclidean distance. Besides, each meta-feature poses a diverse impact on similarity learning.

‣ To address these issues, we propose to use a supervised learning method (i.e., regression model) to learn the similarity given two tasks.

‣ Given the meta-features of two input tasks: 𝑣𝑣1 and 𝑣𝑣2, the regression model 𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟: (𝑣𝑣1,𝑣𝑣2) → 𝑑𝑑 predicts their distances 𝑑𝑑 ∈ [0,1]
‣ A smaller distance d indicates that the two tasks are more similar to each other.

‣ The training data : collected a wide range of Spark jobs 𝑇𝑇1,…,𝐾𝐾 and the corresponding tuning history 𝐻𝐻1,…,𝐾𝐾
‣ The tuning history 𝐻𝐻𝑖𝑖 of the 𝑖𝑖𝑡𝑡𝑡 task consists of the pairs of configuration and its performance (maybe meta-features..?).

25 / 35

5.1 Task Characterization & Similarity Learning
‣ To define the distance metrics..

‣ by calculating the number of discordant pairs of predictions (i.e., pair-wise ranking) using the negative Kendall-tau coefficient.
‣ What is the Kendall-tau coefficient?

‣ A kind of rank correlation coefficients (순위 상관 계수)
‣ 두 변수들 간의 순위를 비교하여 연관성을 계산
‣ [-1, 1]

‣ That is, given two configurations 𝑥𝑥𝑘𝑘 and 𝑥𝑥𝑙𝑙, and surrogates model 𝑀𝑀𝑖𝑖 and 𝑀𝑀𝑗𝑗 on the 𝑖𝑖𝑡𝑡𝑡 and 𝑗𝑗𝑡𝑡𝑡 task,
‣ the pair (𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑙𝑙) is discordant if the sort order of (𝑀𝑀𝑖𝑖 𝑥𝑥𝑘𝑘 ,𝑀𝑀𝑖𝑖(𝑥𝑥𝑙𝑙)) and (𝑀𝑀𝑗𝑗 𝑥𝑥𝑘𝑘 ,𝑀𝑀𝑗𝑗(𝑥𝑥𝑙𝑙)) disagrees.

‣ The distance is defined as the ratio of discordant pairs:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝑖𝑖 ,𝑀𝑀𝑗𝑗 =
1 − 𝜏𝜏𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑀𝑀𝑖𝑖 ,𝑀𝑀𝑗𝑗

2
‣ where 𝜏𝜏𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑀𝑀𝑖𝑖 ,𝑀𝑀𝑗𝑗 is the Kendall-tau coefficient of two vectors by applying surrogates on randomly sampled configurations 𝑫𝑫𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓.
‣ The range of distance is scaled to [0,1]

‣ The regression model is LightGBM regressor.

26 / 35

5.2 Warm-starting & Surrogate Improvement
Initial design with warm-starting
‣ In vanilla BO, the search process starts from scratch.

‣ We rank the previous tasks using the predictions of meta-learner and choose the top-3 most similar tasks. Then, we select the best
Spark configuration found in these top-3 tasks and set them as the initial configurations before starting the main BO loop.

‣ In this way, our framework could achieve a better performance in the beginning. In addition, we also can suggest the sub-space for a
new tuning task using task similarity.

Surrogate modeling with meta-learning
‣ We propose to build a meta-learning surrogate ensemble 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.

‣ The prediction of 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 at configuration x is given by 𝑦𝑦 ~ 𝒩𝒩(𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥 ,𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 𝑥𝑥):

‣ where 𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖2 are the predictive mean and variance form base surrogate 𝑀𝑀𝑖𝑖.

‣ The weight of base surrogate 𝑤𝑤𝑖𝑖 reflects the similarity between the previous and current task.
‣ 𝑤𝑤𝑖𝑖 = 1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝑖𝑖 ,𝑀𝑀𝑡𝑡 where Σ𝑖𝑖𝑤𝑤𝑖𝑖 = 1

27 / 35

6. EXPERIMENTS AND RESULTS

28

6. Experiments and results
To evaluate our framework, in this section, we list three insights we want to investigate.

1) Practicality
 Achieving significant cost reductions compared with human experts when tuning 25K real-world Spark tasks in Tencent

2) Generality
 Supporting different tuning objectives (runtime and cost) and Spark task types (MR and SQL)
 Consistently outperforming state-of-the-art Spark tuning approaches on various standard benchmarks

3) Efficiency
 Greatly accelerating the tuning process and requires only a few trials to find near-optimal configuration.

29 / 35

6.1 Experimental Setup
Benchmark Programs
‣ HiBench (Bayes, Kmeans, NWeight, WordCound, PageRank, TeraSort)
‣ 16 tasks is used in the meta-learning experiment

Environment
‣ Tencent data platform

‣ x86 clusters with four nodes
‣ 2 AMD EPY7K62 2.80GHz 48-core processors and 512 GB PC4 memory
‣ Spark 3.0

Spark Paramaeters
‣ 30 parameters used in Tuneful
‣ the value ranges of the parameters are set differently depending on the cluster size

Compared Methods
1) Random Search
2) RFHOC random forests for each task + Genetic algorithm
3) DAC a datasize-aware auto-tuning approach; hierarchical regression tree models + Genetic algorithm
4) CherryPick BO-based approach; aims at minimizing the user cost and subjects to a runtime threshold
5) Tuneful BO-based approach in an online manner
6) LOCAT BO-based online approach for Spark SQL

30 / 35

6.1 Experimental Setup
Objectives
‣ Runtime (𝛽𝛽 = 1) , Cost (𝛽𝛽 = 0.5)

Metrics & Settings
‣ Speedup

‣ the execution time of the best-found configuration relative to the one from random search

‣ Cost
‣ The Cost at 𝑖𝑖𝑡𝑡𝑡 iteration is the execution cost of the 𝑖𝑖𝑡𝑡𝑡 tried configuration.
‣ “Min Cost” refers to the execution cost of the best configuration found.

‣ Cost Reduction
‣ = 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟
‣ reference methods: random search or default configuration, etc.

‣ All experiments running on HiBench are repeated 10 times with different random seeds and the average metrics are reported.

31 / 35

6.3 Results on Public Benchmarks

‣ The overall budget : 30 iterations
‣ runtime constraint : 2 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑

Observations
a. ML-based approaches (RFHOC and DAC) achieve a relatively lower speedup compared with BO-based approaches.

 ML-based models need a large number of training samples
 30 iterations are insufficient in the search space

b. BO-based approaches (CherryPick, Tuneful, LOCAT, and ours) get a better result under the limited budget.
 CherryPick does not reduce the search space, tuning large space
 Tuneful and LOCAT use different techniques to select important parameters and their rankings are unstable

c. Our framework achieves the best and consistent speedup among all compared methods

32 / 35

6.3 Results on Public Benchmarks

‣ we also present the relative execution cost reduction of all methods compared with random search.
‣ Compared with runtime, the execution cost is a more difficult objective to optimize.

‣ Concretely, our framework achieves a cost reduction of 71.22-88.97% relative to random search and obtains a cost reduction of 38.43%
and 45.20% on average compared with competitive baselines Tuneful and LOCAT, respectively.

33 / 35

6.4 Meta-learning Experiments

Warm-starting Acceleration with ensemble surrogate

34 / 35

6.5 Ablation Studies

Sub-space Generation Safe Exploration and Exploitation

Approximate Gradient Descent

35 / 35

	표지
	240124_Online-Tune
	Towards General and Efficient Online Tuning for Spark�VLDB’23
	슬라이드 번호 2
	슬라이드 번호 3
	슬라이드 번호 4
	슬라이드 번호 5
	슬라이드 번호 6
	슬라이드 번호 7
	슬라이드 번호 8
	슬라이드 번호 9
	슬라이드 번호 10
	슬라이드 번호 11
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17
	슬라이드 번호 18
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	슬라이드 번호 24
	슬라이드 번호 25
	슬라이드 번호 26
	슬라이드 번호 27
	슬라이드 번호 28
	슬라이드 번호 29
	슬라이드 번호 30
	슬라이드 번호 31
	슬라이드 번호 32
	슬라이드 번호 33
	슬라이드 번호 34
	슬라이드 번호 35

